
Gulfstream: Incremental Static Analysis for
Streaming JavaScript Applications

Benjamin Livshits
Microsoft Research

Salvatore Guarnieri
University of Washington

January 20, 2010

MSR-TR-2010-4

1



Abstract

The advent of Web 2.0 has led to the proliferation of client-side code that is typi-
cally written in JavaScript. Recently, there has been an upsurge of interest in static
analysis of client-side JavaScript. However, most approaches in static analysis lit-
erature assume that the entire program is available to analysis. This, however, is in
direct contradiction with the nature of Web 2.0 programs that are essentially being
streamed at the user’s browser. Users can see data being streamed to pages in the
form of page updates, but the same thing can be done with code, essentially de-
laying the downloading of code until it is needed. In essence, the entire program
is never completely available, by interacting with the application, more and more
code is sent over to the browser.

This paper explores incremental static analysis as a way to analyze streaming
JavaScript programs. In particular, we advocate the use of combined offline-online
static analysis as a way to accomplish fast, online incremental analysis at the ex-
pense of a more thorough and costly offline analysis on the static code. We find
that in normal use, where updates to the code are small, we can incrementally up-
date static analysis results quickly enough to be acceptable for everyday use. We
demonstrate this hybrid approach to be advantageous in a wide variety of settings,
especially in mobile devices.

1 Introduction

The advent of Web 2.0 has led to the proliferation of client-side code that is typi-
cally written in JavaScript. This code is often combined or mashed-up with other
code and content from different third-party servers, making the application only
fully available within the user’s browser. Recently, there has been an upsurge of
interest in static analysis of client-side JavaScript. However, most approaches in
static analysis literature assume that the entire program is available to analysis.
This, however, is in direct contradiction with the nature of Web 2.0 programs that
are essentially being streamed to the user’s browser. In essence, the entire program
is never completely available, by interacting with the application, more and more
code is sent over to the browser.

In the context of performing static analysis to enforce security properties, for
instance, the pattern than becomes clear after analyzing several such large Web 2.0
applications is that while most of the application can be analyzed offline, some
parts of it will need to be analyzed on-demand, in the browser. For example, 71%
of Facebook code is downloaded right away, 62 more KB of code are downloaded
when visiting event pages, etc. Similarly, Bing Maps downloads most of the code
right away, however, requesting traffic requires additional code download. More-

2



over, often the parts of the application that are downloaded later are composed on
the client by referencing a third-party library. This can be done to as a way to factor
out browser-specific or even user-specific code. Analyzing this code ahead of time
may be inefficient or even impossible.

The dynamic nature of JavaScript, combined with incremental code download
construction in the browser leads to some unique challenges. For instance, con-
sider the piece of HTML in Figure 1. Suppose we want to statically determine
what code may be called from the onclick handler to ensure that none of the in-
voked functions may block. If we only consider the first SCRIPT block, we will
conclude that the onclick handler may only call function foo. Including the sec-
ond SCRIPT block adds function bar as a possible function that may be called.
Furthermore, if the browser proceeds to download more code, either through more
SCRIPT blocks or XmlHttpRequests, more code might be considered to find tar-
gets of the onclick handler.

As the example in Figure 1 demonstrates, JavaScript in the browser essentially
has a streaming programming model: sites insert JavaScript code into the informa-
tion sent to the user, and the browser is happy to execute any code that comes its
way.

GULFSTREAM advocates performing incremental static analysis within a web
browser. We explore the trade-off between offline static analysis performed on the
server and fast, incremental analysis performed in the browser. We conclude that
incremental analysis is fast enough, especially on small incremental updates, to be
made part of the overall browser infrastructure.

<HTML>

<HEAD>

<SCRIPT>

function foo(){...}

var f = foo;

</SCRIPT>

<SCRIPT>

function bar(){...}

if (...) f = bar;

</SCRIPT>

</HEAD>

<BODY onclick="f();">

...

</BODY>

</HTML>

Figure 1: Example of adding JavaScript code over time.

3



1.1 Contributions

This paper makes the following contributions:

• Incremental analysis. With GULFSTREAM, we demonstrate how to build
an incremental version of a point-to analysis, which is a building block for
implementing static checkers of various sorts. Our analysis is staged, mean-
ing that portions of the analysis can be performed offline on the server, with
analysis on code deltas being performed in the browser whenever needed.

• Staged computation. We demonstrate how to serialize pointer analysis in-
formation for staged computation which is done primarily on the server, and
is incrementally updated in the browser. For completeness, we compare
the results of a hand-coded and a BDD-based pointer analysis implemen-
tation and discover that GULFSTREAM represents data more compactly than
BDDs.

• Trade-off. We use a wide range of JavaScript inputs of various sizes to es-
timate the overhead of incremental computation. We propose strategies for
choosing between staging strategies for various network settings. We ex-
plore the tradeoff between computation and network data transfer and sug-
gest strategies for different use scenarios.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 provides background
on both client-side web applications and static analysis. Section 3 provides an
overview of our approach. Section 4 gives a description of our implementation.
Section 5 discusses our experimental results. Finally, Sections 6 and 7 describe
related work and provide conclusions.

2 Background

This section first provides a background on static analysis and why it is needed,
and then talks about code loading in Web applications.

2.1 Static Analysis

Static analysis has long been recognized as an important building block for achiev-
ing reliability, security, and performance. Static analysis may be used to find viola-
tions of important reliability properties; in the context of JavaScript, tools such as
JSLint [8] fulfill such a role. Soundness in the context of static analysis gives us a

4



Page visited or Added JavaScript
action performed files KB

FACEBOOK FRONT PAGE

Home page 19 157
Friends 7 186
Inbox 1 206
Profile 1 219

FACEBOOK SETTINGS PAGE

Settings—Network 13 136
Settings—Notifications 1 137
Settings—Mobile 3 151
Settings—Language 1 152
Settings—Payments 0 152

OUTLOOK WEB ACCESS (OWA)

Inbox page 7 1,680
Expand an email thread 1 95
Respond to email 2 134
New meeting request 2 168

Figure 2: Incremental loading of Facebook and OWA JavaScript code.

chance to provide guarantees on the analysis results, which is especially important
in the context of checking security properties. In other words, lack of warnings of
a static analyzer implies that no security violations are possible at runtime; several
projects have explored this avenue of research for client-side JavaScript [7, 15].
Finally, static analysis may be used for optimization: statically-computed infor-
mation can be used to optimize runtime execution. For instance, in the context of
JavaScript, knowledge of types may be used to improve the performance of runtime
tracing [14] within the JavaScript JIT.

Several broad approaches exist in the space of static analysis. While some re-
cent static analysis in type inference have been made for JavaScript [18], the focus
of this paper is on pointer analysis. The goal of pointer analysis is to answer the
question “given a variable, what heap objects may it point to?” While a great vari-
ety of techniques exist in the pointer analysis space, resulting in widely divergent
trade-offs between scalability and precision, a popular choice is to represent heap
objects by their allocation site. For instance, for the program below

5



(a) Facebook code growth over time
(front page).

(b) Facebook code growth over time
(settings page).

0

500

1,000

1,500

2,000

2,500

Inbox page Expand an email thread Respond to email New meeting request

(c) Outlook Web Access code growth
over time.

Figure 3: CDF of incremental code loading.

1. var v = null;

2. for (...) {

3. var o1 = new Object();

4. var o2 = new Object();

5. if (...)

6. v = o1;

7. else

8. v = o2;

9. }

variables o1 and o2 point to objects allocated on lines 3 and 4, respectively. Vari-
able v may point to either object, depending on the outcome of the if on line 5.
Note that all objects allocated on line 3 within the loop are represented by the same
allocation site, potentially leading to imprecision. However, imprecision is in-
evitable in static analysis, as it needs to represent an unbounded number of runtime
objects with a constant number of static representations.

In this paper, we focus on the points-to analysis formulation proposed by
the Gatekeeper project [15]. Gatekeeper implements a form of inclusion-based
Andersen-style context-insensitive pointer analysis [2], which shows good scala-

6



JavaScript 

sources

Graph 

representation

bddbddb

Normalized 

representation
Resolve queries

Resolve queries

Results

Results

Gulfstream

Gatekeeper

Figure 4: GULFSTREAM architecture and a comparison with the Gatekeeper project.

bility properties, potentially with a loss of precision due to context insensitivity.
However, for many applications, such as computing the call graph for the program,
context sensitivity has not been shown to be necessary [21].

Static analysis is generally used to answer questions about what the program
might do at runtime. For instance, a typical query may ask if it is possible for the
program to call function alert, which might desirable to avoid code leading to an-
noying popup windows. Similarly, points-to information can be used to check heap
isolation properties such as “there is no way to access the containing page without
going through proper APIs” in the context of Facebook’s FBJS [12]. Properties
such as this can be formulated as statically resolved heap reachability queries.

2.2 Code Loading in Web Applications

Web 2.0 programs are inherently streaming, which is to say that they are down-
loaded over time. We performed a small study of two large-scale representative
AJAX applications. Figure 2 summarizes the results of our experiments. We start
by visiting the main page of each application and then, over time attempt to use
more and more application features, paying attention to how much extra JavaScript
code is downloaded to the user’s browser. Note that we take care not to change the
URL, which would invalidate the JavaScript context.

As Figure 2 and 3 demonstrate, much of the code is downloaded initially. How-
ever, as the application is getting used more and more, quite a bit of extra code is
sent to the browser. For instance, the “account settings” functionality in the case
of Facebook and the “new meeting request” in the case of OWA account for close
to 200 KB of JavaScript code. In the case of Facebook, we end up with more than
twice the amount of initial code once we have used the application for a while.
OWA, in contrast, is a little more monolithic, growing by about 23% over the time
of our use session. Moreover, the code that is downloaded on demand is highly
workload-driven. Only some users will need certain features, leading much of the
code to be used quite rarely. As such, analyzing the main “initial” portion of the ap-
plication on the server and analyzing the rest of the code on-the-fly is a reasonable
alternative in this highly dynamic environment.

7



3 Overview

In this paper, we consider two implementation strategies for points-to analysis.
The first one is based on in-memory graph data structures that may optionally be
serialized to be transmitted from the server to the client. The second one is Gate-
keeper, a BDD-based implementation described in Guarnieri et al. [15]. Somewhat
surprisingly, we conclude that there is relatively little difference between the two
implementations, both in terms of running time as well as in terms of the size of
result representation they produce. In some cases, for small incremental updates, a
graph-based representation is more efficient than the bddbddb-based one. Figure 4
summarizes GULFSTREAM approach and shows how it compares to the Gatekeeper
strategy.

Soundness. In this paper we do not focus on the issue of analysis soundness.
Soundness would be especially important for a tool designed to look for security
vulnerabilities, for instance. Generally, sound static analysis of JavaScript only
has been shown possible for subsets of the language. If the program under analy-
sis belongs to a particular language subset, such as JavaScriptSAFE advocated in
Guarnieri et al. [15], the analysis results are sound. However, even if it does not,
analysis results can still be used for bug finding, without necessarily guaranteeing
that all the bugs will be found. In the remainder of the paper, we ignore the is-
sues of soundness and subsetting, as we find them to be orthogonal to incremental
analysis challenges.

Client analyses as queries. In addition to the pointer analysis, we also show how
GULFSTREAM can be used to resolve two typical queries that take advantage of
points-to analysis results. The first query looks for calls to alert, which might be
undesirable annoyance to the user and, as such, need to be prevented in third-party
code. The second looks for calls to setInterval with non-function parameters.
This is effectively a commonly overlooked form of dynamic code loading similar
to eval.

Incremental analysis. A website is often built from many sources. The very nature
of JavaScript encourages scripts from various sources to be put together to create
a website. We have noticed that when a website incrementally loads JavaScript,
most of a webpage’s JavaScript can be determined statically before it is sent to
a browser. We noticed this on dynamic sites such as Facebook and OWA 2. As
the user interacts with the website, updates to the JavaScript are sent to update the
website. If the updates to the website’s JavaScript are small, it would make sense
that an incremental analysis would perform better than a full program analysis. We

8



s ::=
ε | [EMPTY]
s; s | [SEQUENCE]
v1 = v2 | [ASSIGNMENT]
v = ⊥ | [PRIMASSIGNMENT]
return v; | [RETURN]
v = new v0(v1, ..., vn); | [CONSTRUCTOR]
v = v0(vthis , v1, v2, . . . , vn); | [CALL]

v1 = v2.f ; | [LOAD]
v1.f = v2; | [STORE]

v = function(v1, ..., vn) {s; }; [FUNCTIONDECL]

Figure 5: JavaScriptSAFE statement syntax in BNF.

looked at range of update sizes to identify when an incremental analysis is faster or
when recomputing the full program analysis is faster. Full program analysis might
be faster because there is book keeping and graph transfer time in the incremental
analysis that is not present in the full program analysis.

Section 5 talks about advantages of incremental analysis in detail. In general,
we find it to be advantageous in most settings, especially on slower mobile con-
nections.

4 Techniques

The first analysis stage is normalizing the program representation. Based on this
normalized representation, we built two analyses. The first is the bddbddb-based
points-to analysis described in Gatekeeper [15]. The other is a hand-coded repre-
sentation of points-to information using graphs as described below. To our surprise,
we find that at least for small programs, the graph-based representation performs
at least as well as the bddbddb-based approach often advocated in the past. The
graph-based representation also produces graphs that can efficiently compressed
and transferred to the browser from the server.

4.1 Normalization

The first analysis stage is normalizing the program representation and is borrowed
from the Gatekeeper project and is shown in Figure 5. As can be seen from the
figure, the original program statements are broken down to their simpler versions,
with temporaries introduced as necessary. Here is a normalization example that

9



Node type Description Node shape Edge

Variable The basic node is a simple variable node. It represents
variables from the program or manufactured during nor-
malization. Line 1 in Figure 7 has two variable nodes, A
and Object. Flow edges from variable nodes to other vari-
able nodes are represented as solid black lines and represent
assignments.

Oval Solid edges

Heap These nodes represent memory locations and are sinks in
the graph: they do not have any outgoing edges. Heap nodes
are created when new memory is created like in line 1 in
Figure 7 when a new Object is created.

Rectangle Dashed
edges

Field These nodes represent fields of objects. They are similar
to variable nodes, except they know their object parent and
they know the field name used to access them from their
object parent. Conversely, variables that have fields contain
a list of the field nodes for which they are the parent. Field
nodes are represented by a triangular node connected to the
object parent by a named edge. Line 4 shows the use of a
field access. The name of the edge is the name of the field.

Triangle Solid edges
marked
with field
name

Argument The fourth type of node is a special node called an argument
node. These nodes are created for functions and are used
to link formals and actuals. The argument nodes contain
edges to their respective argument variables in the function
body and when a function is called, the parameter being
passed in gets an edge to the respective argument node. In
the graph, Argument nodes are represented by pentagons
and are connected to their function parent by dotted edges.
Lines 7 and 8 from Figure 7 show a function node being
created and used. Return values are also represented by this
type of node.

Pentagon Dotted
edges

Figure 6: Description of nodes types in the graph.

demonstrates variable introduction:

var x = new Date(); x = new Date();

var y = 17; y = ⊥;
h.f = h.g; t = h.g; h.f = t;

Variable t has been introduced to hold the value of field h.g. Since we are not
concerned with primitive values such as 17, we see it represented as ⊥.

4.2 Graph Representation

The points-to information is calculated from a graph representing the program
stored in memory. The graph is generated from the normalized program. As-
signments turn into edges, field accesses turn into named edges, constructor calls

10



create new sinks that represent the heap, and so on. The graph fully captures the
points-to information for the program. One important note is that this graph is not
transitively closed. If the program states that A flows to B and B flows to C, the
graph does not contain an edge from A to C even though A flows to C. The graph
must be traversed to conclude that A points to C.

The full graph consists of several different types of nodes, as summarized in
Figure 6. We use the program and corresponding graph in Figure 7 as an example
for our program representation. In lines 1-5, the program is creating new objects
which creates new heap nodes in the graph. In lines 4, 6, and 7, the program is
accessing a field of an object which makes use of a field edge to connect the base
object’s node to the field’s field node. The first use of a field creates this new edge
and field node. Line 7 creates a new function, which is similar to creating a new ob-
ject. It creates a new heap node, but the function automatically contains argument
nodes for each of its arguments. These nodes act as a connection between actuals

1. var A = new Object();

2. var B = new Object();

3. x = new Object();

4. x.foo = new Object();

5. y = new Object();

6. y.bar = x;

7. y.add = function(a, b) {}

8. y.add(A, B)

(a) Input JavaScript program.

h2 h1 h4 h3 h5

x BA y
temp1

foo

temp2 temp3

addba
r

arg1 arg2

(b) Resulting graph.

Figure 7: Program with a function call.

11



and formals. All actuals must flow through these argument nodes to reach the for-
mal nodes inside the function body. Line 8 calls the function created in line 7. This
line creates assignment edges from the actuals (A and B) to the argument nodes,
which already have flow edges to the formal.

4.3 Serialized Graph Representation

The output of each stage of analysis is also the input to the next stage of analysis,
so the size and transfer time of this data must be examined when looking at our
incremental analysis. We compare the sizes of two simple file formats that we
implemented and a third that is the bddbddb graph output, which is a a serialized
BDD.

The first format from our analysis is based on the graphviz DOT file [11]. This
format maintains variable names for each node as well as annotated edges. The
second format from our analysis is efficient for directed graphs and removes all
non-graph related data like names. This format is output in binary is as follows:

[nodeid];[field_id1],[field_id2],...;[arg_id1],...;

[forward_edge_node_id1],[forward_edge_node_id2],...;

[backward_edge_node_id1],[backward_edge_node_id2],...;

[nodeid]...

where nodeid, field id1, etc. are uniquely chosen integer identifiers given to
nodes within the graph. Finally, the third format is a serialized BDD-based repre-
sentation of bddbddb.

Overall, the sizes of the different formats of the incremental graph vary widely.
The DOT format is the largest, and this is to be expected since it is a simple text
file describing how to draw the graph. The binary format and bddbddb output are
closer in size, with the binary format being marginally smaller.

Since our main focus was not to develop a new efficient graph storage format,
we gzip all the graph output formats to see how their sizes compared under an
industry-standard compression scheme. There would be a cost to unzip each file
and this must be added to the time needed to transfer the graph. Since BDDs are
highly optimized to minimize space usage, one would expect their zipped size to
be similar to their unzipped size. As expected, the DOT format receives huge gains
from being zipped, but it is still the largest file format. The difference between
the three formats is minimal once they are all zipped, which means that with an
efficient unzip routine, the graph output format does not make much of a difference
on the incremental analysis time on a fast link. A more detailed comparison of
graph representation sizes is presented in Section 5.

12



pointsTo = ∅ 7→ ∅ // points-to map
reversePointsTo = ∅ 7→ ∅ // reverse version of points-to map
inc insert(G, e) // incrementally update points-to map

1: invalid = ∅
2: if e.src ∈ G then
3: invalidate(e.src)
4: end if
5: if e.dst ∈ G then
6: invalidate(e.dst)
7: end if
8: G = 〈GN ∪ {esrc, edst}, GE ∪ {e}〉
9: for all n ∈ invalid do

10: ans =compute-points-to(n, ∅)
11: pointsTo[n] = pointsTo[n] ∪ ans
12: for all h ∈ ans do
13: reversePointsTo[h] = reversePointsTo[h] ∪ n
14: end for
15: end for
16: return G

invalidate(n ∈ GN ) // recursively invalidate following flow edges

1: if n ∈ invalid then
2: return
3: end if
4: invalid← invalid ∪ {n}
5: for all n′ adjacent to n do
6: if n→ n′ is an assignment edge then
7: invalidate(n′)
8: end if
9: end for

10: return G

Figure 8: Routines inc insert and invalidate.

13



4.4 Analysis

Our system normalizes JavaScript into a representation that we can easily output
for analysis. This means it is straightforward for us to try several different analysis
techniques. We have two outputs of our representation at the moment, and output
to Datalog facts that is used by bddbddb and an output to a graph representing the
program which is used by our implementation of a points-to analysis. The reader
is referred to prior work for more information about bddbddb-based analyses [5,
15, 25].

GULFSTREAM maintains a graph representation which is being updated as
more of the program is processed. Figure 8 shows a pseudo-code version of the
graph update algorithm that we use. In addition to maintaining a graph G, we
also save two maps pointsTo, mapping variables to heap locations and its reverse
version for fast lookup, reversePointsTo. Function inc insert processes every
edge e inserted into the graph. If the edge is not adjacent to any of the existing
edges in graph G, we update G with edge e. If it is, we add the set of nodes that
are adjacent to the edge, together with a list of all nodes from which they flow
to a worklist called invalid. Next, for all nodes in that worklist, we proceed to
recompute their points-to values.

The points-to values are recomputed using a flow based algorithm. Figure 9
shows the pseudo-code version of our points-to algorithm, including helper func-
tions. For standard nodes and edges, it works by recursively following all reverse
flow edges leaving a node until it reaches a heap node. If a cycle is detected, that
recursion fork is killed as all nodes in that cycle will point to the same thing and
that is being discovered by the other recursion forks. Since flows are created to
argument nodes when functions are called, this flow analysis will pass through
function boundaries. Field nodes and argument nodes require special attention.
Since these nodes can be indirectly aliased by accessing them through their parent
object, they might not have direct flows to all their aliases. When a field node is
reached in our algorithm, all the aliases of this field node are discovered, and all
edges leaving them are added to our flow exploration. This is done by recording
the name of the field for the current field node, finding all aliases of the parent to
the field node, and getting their copy of a field node representing the field we are
interested in. In essence, we are popping up one level in our flow graph, finding
all aliases of this node, and descending these aliases to reach an alias of our field
node. This process may be repeated recursively if the parent of a field node is itself
a field node. The exact same procedure is done for argument nodes for the case
when function aliases are made.

Note that the full analysis is a special, albeit more inefficient, case of the incre-
mental analysis where the invalid worklist is set to be all nodes in the graph GN .

14



compute-points-to(n, visitedNodes)
1: if n ∈ visitedNodes then
2: return
3: else
4: visitedNodes = visitedNodes ∪ {n}
5: end if
6: toVisit = ∅
7: ans = ∅
8: if n is HeapNode then
9: return n

10: end if
11: if n is FieldNode then
12: toVisit = toVisit ∪

compute-field-aliases(n.parent, n.fieldname)
13: end if
14: for assignment-edge e leaving n do
15: toVisit = toVisit ∪ {e.sink}
16: end for
17: for noden′ ∈ toVisit do
18: ans = ans ∪ compute-points-to(n′, visitedNodes)
19: end for
20: return ans

compute-field-aliases(parent, fieldname)
1: toVisit = ∅
2: if parent is FieldNode then
3: toVisit = toV isit ∪

compute-field-aliases(parent.parent, parent.fieldname)
4: end if
5: toVisit = toVisit∪ compute-aliases(parent)
6: for n ∈ toVisit do
7: if n has field fieldname then
8: ans = ans ∪ {n.fieldname}
9: end if

10: end for
11: return ans

compute-aliases(n, visitedNodes)
1: ans = n
2: if n ∈ visitedNodes then
3: return n
4: else
5: visitedNodes = visitedNodes ∪ {n}
6: end if
7: for edge e leaving n do
8: ans = ans ∪ compute-aliases(e.sink, visitedNodes)
9: end for

10: return ans

Figure 9: Points-to computation algorithm.

15



Figure 9 shows pseudo-code for computing points-to values for a particular
graph node n.

4.5 Queries

The points-to information is essentially a mapping from variable to heap locations.
Users can take advantage of this mapping to run queries against the program being
loaded. In this paper, we explore two representative queries and show how they
can be expressed and resolving using points-to results.

• Not calling alert. It might be undesirable to bring up popup boxes, es-
pecially in library code designed to be integrated into large web sites. This
is typically accomplished with function alert in JavaScript. This query
checks for the presence of alert calls.

• Not calling setInterval with a dynamic function parameter. In
JavaScript, setInterval is one of the dynamic code execution constructs
that may be used to invoke arbitrary JavaScript code. This “cousin of eval”
may be used as follows:

setInterval(

new Function(

"document.location=’http://evil.com’;"),

500);

In this case, the first parameter is dynamically constructed function that will
be passed to the JavaScript interpreter for execution. Alternatively, it may
be a reference to a function statically defined in the code. In order to pre-
vent arbitrary code injection and simplify analysis, it is desirable to limit
the first parameter of setInterval to be a statically defined function, not a
dynamically constructed function.

Figure 10 shows our formulation of the queries. The detect− alert− calls
query looks for any calls to alert. It does this by first finding all the nodes
that point to alert, then examining them to see if they are called (which is deter-
mined during normalization). The detect− set− interval− calls is some-
what more complicated. It cares if setInterval is called, but only if the first
parameter comes from the return value of the Function constructor. So, all the
the source nodes from edges entering the first argument’s node in setInterval
must be examined to see if it has an edge to the return node of the Function con-
structor. In addition, all aliases of these nodes must also be examined to see if they
have a flow edge to the return node of the Function constructor.

16



detect-alert-calls()
1: nodes =reversePointsTo[alertΓ]
2: for all n ∈ nodes do
3: for all edge e leaving nodes do
4: return true

5: end for
6: end for
7: return false

detect-set-interval-calls()
1: n = setInterval.arg1
2: for all edge e entering n do
3: if e.src == Function.return then
4: return true

5: else
6: p = find-all-aliases(e.src)
7: end if
8: end for
9: for all node n2 in p do

10: for all edge e2 entering n2 do
11: if e2.src == Function.return then
12: return true

13: end if
14: end for
15: end for

find-all-aliases(node)
1: aliases = empty
2: heapNodes = pointsTo[node]
3: for all n ∈ heapNodes do
4: aliases = aliases ∪ reversePointsTo[n]
5: end for
6: return aliases

Figure 10: Queries detect-alert-calls and detect-set-interval-calls.

The results to these queries are updated when updates are made to the
points-to information. This ensures that the results are kept current on the
client machine. A policy is a set of queries and expected results to those
queries. A simple policy would be to disallow any calls to alert, so it
would expect detect− alert− calls from Figure 10 to return false. If
detect− alert− calls ever returns true, the analysis engine could either notify
the user or stop the offending page from executing.

5 Experimental Evaluation

This section is organized as follows. We first discuss analysis time and the space
required to represent analysis results in Sections 5.1 and 5.2. Section 5.3 explores
the tradeoff between computing results on the client and transferring them over the

17



−10000

−5000

0

5000

10000
T

im
e

D
iff

(m
s)

[+
m

e
a
n
s

m
a
n
u
a
l
is

fa
st

e
r]

0 2500 5000 7500 10000 12500 15000

Size (bytes)

BDD

Manual

Figure 11: Running time difference between hand-coded and bddbddb-based implementation as a
function of the input size.

wire. Our measurements were performed on a MacBook Pro 2.4 GHz Dual Core
machine running Windows 7. The JavaScript files we used during testing were a
mix of hand crafted test files, procedurally generated files, and files scraped from
Google code search.

5.1 Analysis Running Time

Figure 12 shows both full and incremental analysis on the same scale. For this
experiment, in the case of incremental analysis we used a base of 30 KB of code.
We see that incremental analysis is consistently faster than full analysis. In the
cases of smaller incremental updates, the difference in running times can be as
significant as a couple of orders of magnitude.

Figure 11 compares how both the GULFSTREAM hand-coded full points-to
analysis and the bddbddb analysis time compare against the incremental analy-
sis. The graph shows the difference in time, with positive values meaning that
incremental analysis is faster. We see that the full analysis is faster by a more or
less constant value. We also see that incremental analysis appears to scale better
for larger updates exceeding 5 KB of code. This is encouraging: it means that we
can implement the hand-coded analysis within the browser without the need for
heavyweight BDD machinery, without sacrificing performance in the process. In
the next section, we show that our space overhead is also generally less than that

18



0

200

400

600

800

1000

T
im

e
(m

s)

0 200 400 600 800 1000

Incremental Size (bytes)

Incremental

Full

(a) Zoom 0-1 KB

0

1000

2000

3000

4000

5000

T
im

e
(m

s)

0 1000 2000 3000 4000 5000

Incremental Size (bytes)

Incremental

Full

(b) Zoom 0-5 KB

Figure 12: Running times for full and incremental analyses in ms as a function of the input size.

19



0

20000

40000

60000

80000

100000

120000

G
ra

p
h

S
iz

e
(b

y
te

s)

30000 40000 50000 60000 70000 80000

File Size (bytes)

DOT

BDD

BIN

(a) Zoom

0

20000

40000

60000

80000

100000

120000

G
ra

p
h

S
iz

e
(b

y
te

s)

25000 50000 75000 100000 125000 150000 175000

File Size (bytes)

DOT gzip

BDD gzip

BIN gzip

(b) Full Graph

Figure 13: Pointer analysis graph size as a function of the input JavaScript file size (gzip-ed).

Configuration CPU Link Latency Bandwidth
ID Name coef. c type L in ms B in kbps

1 G1 67.0 EDGE 500 2.5
2 Palm Pre 36.0 Slow 3G 500 3.75
3 iPhone 3G 36.0 Fast 3G 300 12.5
4 iPhone 3GS 3G 15.0 Slow 3G 500 3.75
5 iPhone 3GS WiFi 15.0 Fast WiFi 10 75.0
6 MacBook Pro 3G 1 Slow 3G 500 3.75
7 MacBook Pro WiFi 1 Slow WiFi 100 12.5
8 Netbook 2.0 Fast 3G 300 12.5
9 Desktop WiFi 0.8 Slow WiFi 100 12.5
10 Desktop T1 0.8 T1 5 1,250.0

Figure 14: Device settings used for experiments across CPU speeds and network parameters. De-
vices are roughly ordered in by computing and network capacity.

of BDDs.

5.2 Space Considerations

Figure 13 shows the sizes of three representations for points-to analysis results and
how they compare to each other. The representations are DOT, the text-based graph
format used by the Graphviz family of tools, bddbddb, a compact, BDD-based
representation, as well as BIN, our graph representation described in Section 4.3.
The graph shows both a zoomed-in version ranging from 30,000 bytes to 80,000
bytes and a version ranging from 0 bytes to 175,000 bytes. All numbers presented
in the figure are after applying industry-standard gzip compression.

We were not surprised to discover that the DOT version is most verbose, even
after gzip has been applied. To our surprise, our simple binary format beats the
compact bddbddb format in most cases, making us believe that a lightweight hand-
coded analysis implementation is a good candidate for being integrated within a

20



Graph Incremental Settings
Graph Size 1 2 3 4 5 6 7 8 9 10

6,914 88 + + + + + - + + - +
7,608 619 + + + + + - - + - +
8,332 1,138 + + + + + - - + - +

11,045 1,644 + + + + + - - - - +
9,400 2,186 + + + + + - - + - +

10,058 2,767 + + + + + - - - - +
12,846 3,293 + + + + + - - - - +
11,269 3,846 + + + + + - - - - +
12,494 4,406 + + + + + - - - - +
12,578 5,008 + + + + + - - - - +

9,526 5,559 + + + + + - - - - +
13,788 6,087 + + + + + - - - - +
14,447 6,668 + + + + + - - - - +
15,095 7,249 + + + + + - - - - +
15,751 7,830 + + + + + - - - - +
16,306 8,333 + + + + + - - - - +
16,866 8,861 + + + + + - - - - +
17,413 9,389 + + + + + - - - - +
17,969 9,917 + + + + + - - - - +
18,520 10,445 + + + - + - - - - +
19,075 10,973 + + + - + - - - - +
19,633 11,501 + + + - + - - - - +
20,184 12,029 + + + - + - - - - +
20,750 12,557 - - + - + - - - - +
34,570 14,816 + + + + + - - + - +
27,699 16,485 - - - - - - - - - -
35,941 17,103 - - + - + - - - - +
38,054 17,909 - - - - - - - - - -
27,296 20,197 - - - - - - - - - -
35,945 25,566 - - - - - - - - - -
17,108 31,465 - - - - - - - - - -
35,411 37,689 - - - - - - - - - -
18,056 38,986 - - - - - - - - - -
10,488 57,254 + + + + + - - - - +

6,836 77,074 + + + + + - - + - +
38,310 124,136 - - - - - - - - - -
38,804 129,739 - - - - - - - - - -

Figure 15: Analysis tradeoff in different environments. “+” means that staged incremental analysis
is advantageous compared to full analysis on the client.

21



web browser.

5.3 Incremental vs Full Analysis Tradeoff

To fully explore the tradeoff between computing analysis results on the client and
transferring it over the wire, we consider 10 device configurations. These configu-
ration vary in terms of the CPU speed as well as network connectivity parameters.
We believe that these cover a wide range of devices available today, from the most
underpowered mobile phones connected over a slow EDGE network to the fastest
desktops connected over a T1 link.

A summary of information about the 10 device configurations is shown in Fig-
ure 14. We based our estimates of CPU multipliers on a report comparing the
performance of SunSpider benchmarks on a variety of mobile, laptop, and desktop
devices [1]. We believe these benchmark numbers to be a reasonable proxy for the
over overall computing capacity of a particular device.

We compare between two options: 1) performing full analysis on the client
and 2) transferring a partial result across the wire and performing incremental
analysis on the client. The equation below summarizes this comparison with B
being the bandwidth, L being the latency, b being the main page, ∆ being the in-
cremental JavaScript update, size being the size of the points-to data needed to
run the incremental analysis, and F and I being the full and incremental analysis
respectively.

c× F (b + ∆) ? L +
size

B
+ c× I(∆)

Figure 15 summarizes the results of this comparison over our range of 10 config-
urations. A + indicates that incremental analysis is faster. Overall, we see that
for all configurations except 6, 7, and 9, incremental analysis is generally the right
strategy. “High-end” configurations 6, 7, and 9 have the distinction of having a rela-
tively fast CPU and a slow network; clearly, in this case, computing analysis results
from scratch is better than waiting for them to arrive over the wire. Unsurprisingly,
the incremental approach advocate by GULFSTREAM excels on mobile devices
and underpowered laptops. Given the growing popularity of web-connected mo-
bile devices, we believe that the incremental analysis approach advocated in this
paper will become increasingly important in the future.

6 Related Work

In this section, we focus on static and runtime analysis approaches for JavaScript.
The approaches accomplish their analysis through the use of type systems, lan-

22



guage restrictions, and modifications to the browser or the runtime. We describe
these strategies in turn below.

6.1 Static Safety Checks

JavaScript is a highly dynamic language which makes it difficult to reason about
programs written in it. However, with certain expressiveness restrictions, desirable
security properties can be achieved. ADSafe and Facebook both implement a form
of static checking to ensure a form of safety in JavaScript code. ADSafe [9] dis-
allows dynamic content, such as eval, and performs static checking to ensure the
JavaScript in question is safe. Facebook uses a JavaScript language variant called
FBJS [12], that is like JavaScript in many ways, but DOM access is restricted and
all variable names are prefixed with a unique identifier to prevent name clashes
with other FBJS programs on the same page.

An interesting recent development in JavaScript language standards commit-
tees is the strict mode (use strict) for JavaScript [10], page 223. Strict mode
accomplishes many of the goals that many current analyses try to achieve: eval is
largely prohibited, bad coding practices such as assigning to the arguments array
are prevented, with is no longer allowed, etc.

A project by Chugh et al. focuses on staged analysis of JavaScript and finding
information flow violations in client-side code [7]. Chugh et al. focus on informa-
tion flow properties such as reading document cookies and changing the locations.
A valuable feature of that work is its support for dynamically loaded and generated
JavaScript in the context of what is generally thought of as whole-program analysis.
Gatekeeper project [15] proposes a points-to analysis based on bddbddb together
with a range of queries for security and reliability. Gulfstream is in many way a
successor of the Gatekeeper project; while the formalism and analysis approaches
are similar, Gulfstream’s focus is on incremental analysis.

Researchers have noticed that a more useful type system in JavaScript could
prevent errors or safety violations. Since JavaScript does not have a rich type
system to begin with, the work here is devising a correct type system for JavaScript
and then building on the proposed type system. Soft typing [6] might be one of
the more logical first steps in a type system for JavaScript. Much like dynamic
rewriters insert code that must be executed to ensure safety, soft typing must insert
runtime checks to ensure type safety.

Other work has been done to devise a static type system that describes the
JavaScript language [3, 4, 24]. These works focus on a subset of JavaScript and
provide sound type systems and semantics for their restricted subsets of JavaScript.
As far as we can tell, none of these approaches have been applied to realistic bodies
of code. GULFSTREAM uses a pointer analysis to reason about the JavaScript

23



program in contrast to the type systems and analyses of these works. We feel
that the ability to reason about pointers and the program call graph allows us to
express more interesting security policies than we would be able otherwise.

This work presents incremental analysis done on the client’s machine to per-
form analysis on JavaScript that is loaded as the user interacts with the page. A sim-
ilar problem is present in Java with dynamic code loading and reflection. Hirzel
et al. solved this problem with a offline/online algorithm [16]. The analysis has
two phases, an offline phase that is done on statically known content, and an online
phase done when new code is introduced while the program is running. They utilize
their pointer analysis results in the JIT. We use a similar offline/online analysis to
compute information about statically known code, then perform an online analy-
sis when more code is loaded. While the techniques in this paper are somewhat
similar, to our knowledge, Gulfstream is the first project to perform staged static
analysis on multiple tiers (server and client-side browser).

6.2 Rewriting and Instrumentation

A practical alternative to static language restrictions is instrumentation. Caja [22]
is one such attempt at limiting capabilities of JavaScript programs and enforcing
this through the use of runtime checks. WebSandbox is another project with similar
goals that also attempts to enforce reliability and resource restrictions in addition
to security properties [20].

Yu et al. traverse the JavaScript document and rewrite based on a security
policy [26]. Unlike Caja and WebSandbox, they prove the correctness of their
rewriting with operational semantics for a subset of JavaScript called CoreScript.
BrowserShield [23] similarly uses dynamic and recursive rewriting to ensure that
JavaScript and HTML are safe, for a chosen version of safety, and all content gen-
erated by the JavaScript and HTML is also safe. Instrumentation can be used for
more than just enforcing security policies. AjaxScope [19] rewrites JavaScript to
insert instrumentation that sends runtime information, such as error reporting and
memory leak detection, back to the content provider.

We feel that sound static analysis may provide a more systematic way to reason
about what code can do, especially in the long run, as it pertains to issues of secu-
rity, reliability, and performance. While the soundness of the native environment
and exhaustiveness of our runtime checks might be weak points of our approach,
we feel that we can address these challenges as part of future work.

24



6.3 Runtime and Browser Support

Current browser infrastructure and the HTML standard require a page to fully trust
foreign JavaScript if they want the foreign JavaScript to interact with their site.
The alternative is to place foreign JavaScript in an isolated environment, which
disallows any interaction with the hosting page. This leads to web sites trusting
untrustworthy JavaScript code in order to provide a richer web site. One solu-
tion to get around this all-or-nothing trust problem is to modify browsers and the
HTML standard to include a richer security model that allows untrusted JavaScript
controlled access to the hosting page.

MashupOS [17] proposes a new browser that is modeled after an OS and mod-
ifies the HTML standard to provide new tags that make use of new browser func-
tionality. They provide rich isolation between execution environments, including
resource sharing and communication across instances. In a more lightweight modi-
fication to the browser and HTML, Felt et al. [13] add a new HTML tag that labels
a div element as untrusted and limits the actions that any JavaScript inside of it
can take. This would allow content providers to create a sand box in which to place
untrusted JavaScript.

7 Conclusions

Static analysis is a useful technique for applications ranging from program opti-
mization to bug finding. This paper explores incremental static analysis as a way
to analyze streaming JavaScript programs. In particular, we advocate the use of
combined offline-online static analysis as a way to accomplish fast, online incre-
mental analysis at the expense of a more thorough and costly offline analysis on
the static code. The offline stage may be performed on a server ahead of time,
whereas the online analysis would be integrated into the web browser. Through a
wide range of experiments, we find that in normal use, where updates to the code
are small, we can incrementally update static analysis results quickly enough to be
acceptable for everyday use. We demonstrate this hybrid staged analysis approach
to be advantageous in a wide variety of settings, especially in mobile devices.

References

[1] Ajaxian. http://ajaxian.com/archives/
iphone-3gs-runs-faster-than-claims-if-you-go-by-sunspider,
June 2009.

25



[2] L. O. Andersen. Program analysis and specialization for the C programming
language. Technical report, University of Copenhagen, 1994.

[3] C. Anderson and P. Giannini. Type checking for JavaScript. In In WOOD
04, volume WOOD of ENTCS. Elsevier, 2004. http://www.binarylord.com/
work/js0wood.pdf, 2004.

[4] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference
for JavaScript. In In Proceedings of the European Conference on Object-
Oriented Programming, pages 429–452, July 2005.

[5] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analy-
sis using bdds. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 confer-
ence on Programming language design and implementation, pages 103–114,
2003.

[6] R. Cartwright and M. Fagan. Soft typing. ACM SIGPLAN Notices,
39(4):412–428, 2004.

[7] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow
for JavaScript. In Proceedings of the Conference on Programming Language
Design and Implementation, June 2009.

[8] D. Crockford. The JavaScript code quality tool. http://www.jslint.com/,
2002.

[9] D. Crockford. AdSafe: Making JavaScript safe for advertising. http://
www.adsafe.org, 2009.

[10] ECMA. Ecma-262: Ecma/tc39/2009/025, 5th edition, final draft.
http://www.ecma-international.org/publications/files/
drafts/tc39-2009-025.pdf, Apr. 2009.

[11] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
Graphviz - open source graph drawing tools. Graph Drawing, pages 483–
484, 2001.

[12] Facebook, Inc. Fbjs. http://wiki.developers.facebook.com/index.
php/FBJS, 2007.

[13] A. Felt, P. Hooimeijer, D. Evans, and W. Weimer. Talking to strangers without
taking their candy: isolating proxied content. In Proceedings of the Workshop
on Social Network Systems, pages 25–30, 2008.

[14] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,

26



B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. Trace-based just-in-
time type specialization for dynamic languages. In PLDI, pages 465–478,
2009.

[15] S. Guarnieri and B. Livshits. Gatekeeper: Mostly static enforcement of secu-
rity and reliability policies for JavaScript code. In Proceedings of the Usenix
Security Symposium, Aug. 2009.

[16] M. Hirzel, D. V. Dincklage, A. Diwan, and M. Hind. Fast online pointer
analysis. ACM Trans. Program. Lang. Syst., 29(2):11, 2007.

[17] J. Howell, C. Jackson, H. J. Wang, and X. Fan. MashupOS: Operating sys-
tem abstractions for client mashups. In Proceedings of the Workshop on Hot
Topics in Operating Systems, May 2007.

[18] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In
Proc. 16th International Static Analysis Symposium, SAS ’09, volume 5673
of LNCS. Springer-Verlag, August 2009.

[19] E. Kıcıman and B. Livshits. AjaxScope: a platform for remotely monitoring
the client-side behavior of Web 2.0 applications. In Proceedings of Sympo-
sium on Operating Systems Principles, Oct. 2007.

[20] Microsoft Live Labs. Live Labs Websandbox. http://websandbox.org,
2008.

[21] A. Milanova, A. Rountev, and B. G. Ryder. Precise call graphs for c programs
with function pointers. Autom. Softw. Eng., 11(1):7–26, 2004.

[22] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active
content in sanitized JavaScript. http://google-caja.googlecode.com/
files/caja-2007.pdf, 2007.

[23] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir. BrowserShield:
Vulnerability-driven filtering of dynamic HTML. In Proceedings of the Sym-
posium on Operating Systems Design and Implementation, 2006.

[24] P. Thiemann. Towards a type system for analyzing JavaScript programs.
2005.

[25] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog and binary
decision diagrams for program analysis. In Proceedings of the Asian Sympo-
sium on Programming Languages and Systems, Nov. 2005.

27



[26] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumentation for
browser security. In Proceedings of Conference on Principles of Program-
ming Languages, Jan. 2007.

28


